

Objectives

- Review patient radiation exposure associated with diagnostic imaging & ways to reduce such exposure
- Outline risks of radiation exposure from diagnostic imaging
- Review patient radiation exposure from medical interventions & methods to reduce such exposure

Stones on the Rise Population at Risk

- Stone incidence increasing
- Recurrence rate high

- Diagnosis of asymptomatic stones increasing
 - Large screening studies Prevalence 8-10%
- More diagnostic testing & more intervention

Scope of Problem

- 1982-2006: per capita radiation exposure from medical sources in US increased nearly 600%
 - $-0.54 \rightarrow 3.0 \text{ mSv}$
 - -CT = 49% of this exposure

CT SCANS PERFORMED	1980	1990	2000	2007
	3 million	13 million	46 million	69 million
American Urological Association				JPMC CHANGING MEDICINE

Mettler et al. Health Phys 2008, 2007, Brenner et al. 2007, Berrington de Gonzalez et al. 2009

Defining Radiation Exposure

- Annual natural background exposure = 3.0 mSv
- KUB = 0.7 mSv
- KUB with tomograms 3.93 mSv
- IVP = 3.7 mSv
- Standard CT = 4.5–20.0 mSv
 - 13 fold variation depending on machine/equipment, settings/technique, & patient
 - Obesity triples radiation dose of stone protocol CT

International Commission on Radiologic Protection (ICRP)

- Occupational exposure recommendations:
 - < 50mSv/year OR 100mSv/5 years
 - No recommended limit for <u>patient</u> medical exposure
 - Unnecessary exposure should be avoided
 - Necessary exposure should be justifiable & optimized

Stone Population: How Much Radiation are They Getting?

 Evaluation & management for single stone event: 1.18-37.66 mSv for event

John et al. J Endourol 2008

- Radiation exposure associated with acute stone episode & 1 year follow-up at 2 academic centers
 - Median effective radiation dose → 29.7 mSv
 - 20% received > 50 mSv: average CT scans = 3.5

Ferrandino et al. J Urol, 2009; 181; 668.

Actual Risk – What Does This Mean?

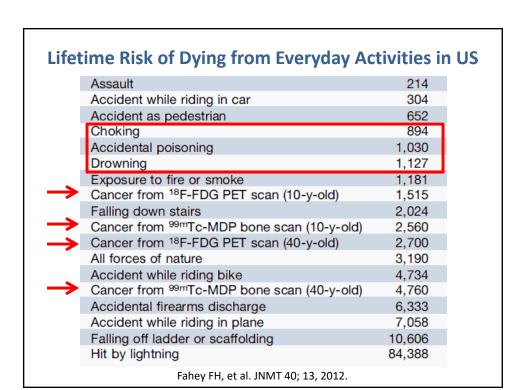
- Atomic bomb survivors in Japan
 - Extrapolated data, real risk unclear
 - Significantly increased cancer risk even at very low radiation exposures (<500 msv)
- Committee on the Biological Effects of Ionizing Radiation (BEIR) – 2006 Report
 - "Supports a <u>linear-no-threshold</u> risk model -- that the risk of cancer proceeds in a linear fashion at lower doses without a threshold & that the smallest dose has the potential to cause a small increase in risk to humans"

Pierce & Preston. Radiat Res 2000 Preston et al. Radiation Research 2007.

MCQ Q1

An example of stochastic effects of radiation is which of the following?

- A. Temporary sterility
- **B.** Cataracts
- C. Alopecia
- D. Malignancies


Radiation Exposure Cancer Risk - Estimations

- Past 1991-1996 CT radiation may have caused 0.4% of all cancers in US
- Present 1.5-2% of cancers in US attributable to CT radiation exposure
- Future Estimated 29,000 future cancers in US can be attributed to CT scan performed in 2007 (70 million scans)

UPMC CHANGING MEDICINE

CT with ED of 10 mSv - approximately 1/2000 increased risk of fatal cancer

Radiation Reduction – ALARA Alternate Methods of Imaging

Low dose CT (LDCT)

- Meta-analysis 1995-2007 sensitivity 96.6% & specificity 94.9%
- Mean ED 1.40mSv males, 1.97mSv females

Ultra-Low dose CT

- -ED < 1 mSv ; < 2 view KUB
- Reduces radiation doses by 23-90%
- Accurate detection 4mm threshold
- Sensitivity and specificity 97% and 95%

Pooler et al. J Urol 2014, McLauglin et al. Insights Imaging 2014, Kluner et al. J Comput Assist Tomogr 2006, Niemann et al. AJR 2008

Alternate Methods of Imaging

Limitations of LDCT:

- Sensitivity & specificity drops for stones <3mm
- Less accurate for overweight, obese patients
- Less able to diagnose non-urologic pathology

Radiation Reduction – ALARA Alternate Imaging - Ultrasound

Advantages	Disadvantages	
Noninvasive	Sensitivity 45%, Specific	city 88%
No radiation, no contrast	Poor accuracy (65%)	
Less expensive	Limited in obesity	
Widely available	Operator dependent	↓
Radiolucent stones visible	Not reproducible	· ·
chler et al. BJUI; 109: 770, 2012		UPMO

Ray et al. Urology; 76: 295, 2010

MCQ Q2

What is the strongest argument against low dose CT (LDCT) to work up suspected stone disease?

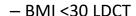
- A. Stone size
- B. Sensitivity for finding stone
- C. Obese patients
- D. Non urologic pathology

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Ultrasonography versus Computed Tomography for Suspected Nephrolithiasis

R. Smith-Bindman, C. Aubin, J. Bailitz, R.N. Bengiamin, C.A. Camargo, Jr., J. Corbo, A.J. Dean, R.B. Goldstein, R.T. Griffey, G.D. Jay, T.L. Kang, D.R. Kriesel, O. J. Ma, M. Mallin, W. Manson, J. Melnikow, D.L. Miglioretti, S.K. Miller, L.D. Mills, J.R. Miner, M. Moghadassi, V.E. Noble, G.M. Press, M.L. Stoller, V.E. Valencia, J. Wang, R.C. Wang, and S.R. Cummings


- Initial presentation of renal colic → Ultrasound
 - lower cumulative radiation exposure
 - no difference in complications (e.g. hospitalizations, return ER visits, serious adverse events)

NEJM 371; 12; 2014

Diagnostic Imaging Current AUA Guidelines

- Postop SWL or URS - ultrasound and/or KUB

Radiation Exposure Interventions

- URS 1.13 mSv
- SWL 0.76 1.18 mSv
- PCNL 8.66 mSv more radiation exposure than CT
- Risks:
 - Obesity
 - Multiple tracts
 - Large stone burden, non-branched stones
 - Operator inexperience

UPMC CHANGING MEDICINE

Radiation Exposure Interventions - PCNL

Obesity increases FT by 36% and ED by 177%

ВМІ	Effective dose (mSv)	
<25	2.66	
30-40	6.49	2 FOLD HIGHER
>40	9.1	3 FOLD HIGHER

Morris et al. J Urol 2006, Mancini et al. J Urol 2010 Tepeler et al. J Endourol 2009, Torrecilia et al. Urology 2014

UPMC CHANGING

Radiation Reduction – Interventions Technique

- Pulsed fluoro lowest possible frames per second (Standard – 30)
- 30 \rightarrow 4 reduces FT by 2.5-2.8 times

Frames per Second	Radiation Reduction
15	22%
10	38%
7.5	49%
3.75	87%

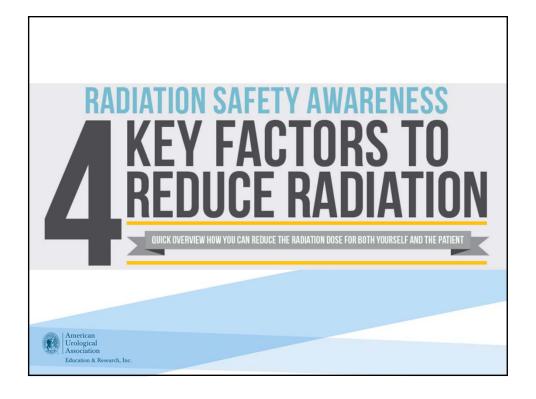
Low dose

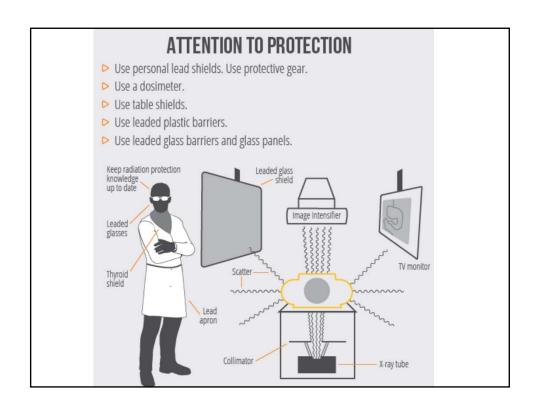
Radiation Reduction – Interventions Technique

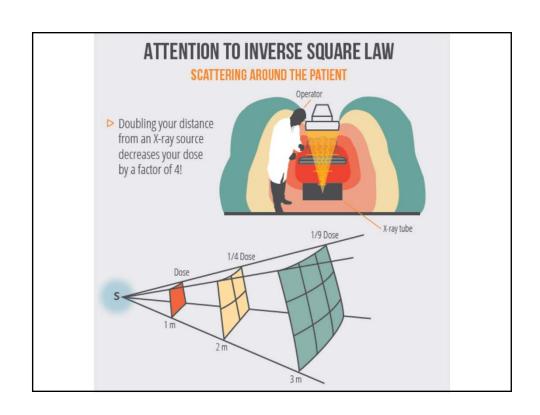
Machine Settings	Surgeon Involvement
Collimation	Visual, tactile cues
Last image hold	Dedicated technician
Save & swap	Foot pedal
Laser Guide	Marking areas of interest
Image intensifier location	Timing fluoro activation

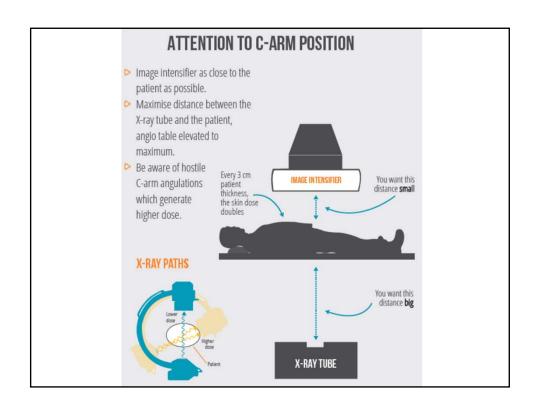
Fluoro protocols/Preop checklist - 80% FT reduction

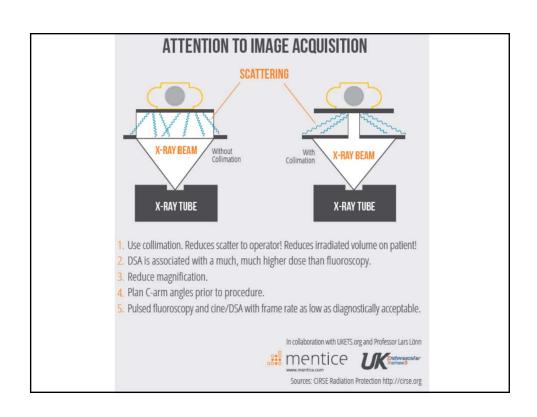
Blair et al. J urol 2013




MCQ Q3


Radiation exposure reduction techniques include all the following, except:

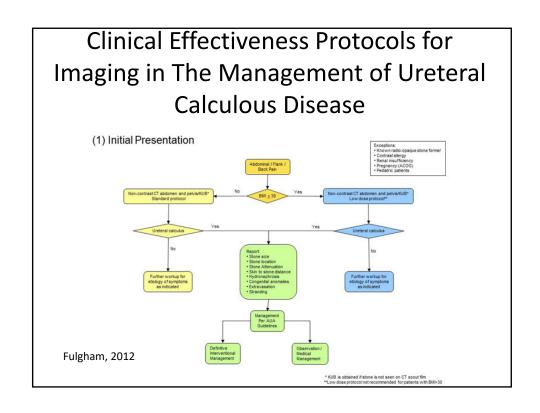

- A. Collimation
- B. Lower pulse rate
- C. Low dose technique
- D. Tech controlled activation

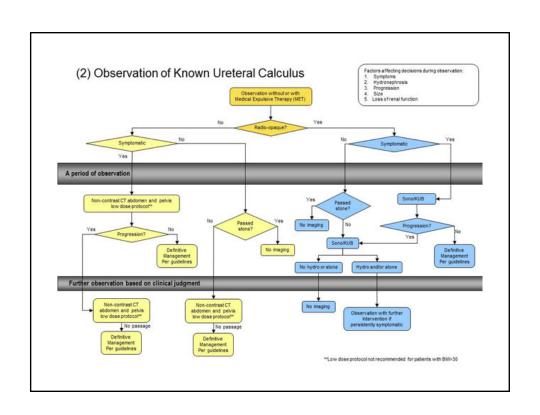


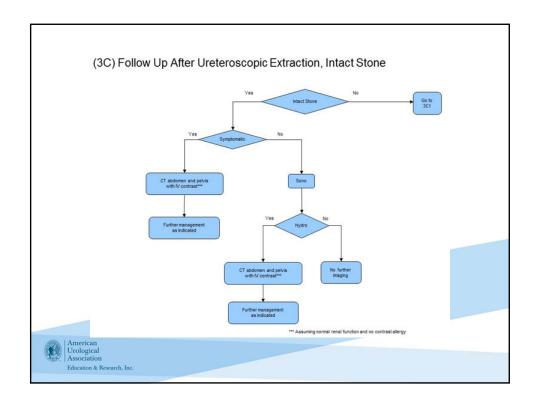
MCQ Q4

To minimize radiation scatter, the urologist should:

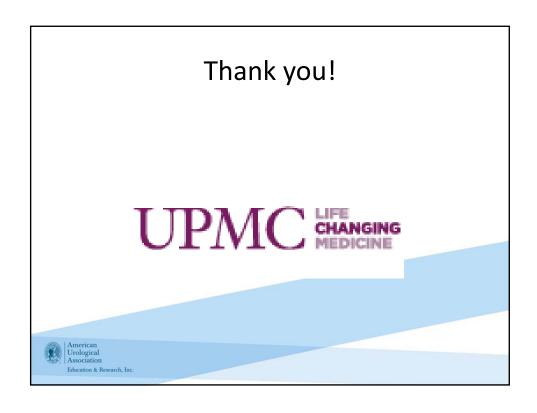
- A. Keep the image intensifier as close to the patient as possible
- B. Use the image intensifier above the patient
- C. Use leaded protection on eyes, thyroid and body
- D. Use collimation


Radiation Reduction – PCNL Image Guidance


- Ultrasound access if BMI <30
 - Challenges user dependent, significant training
 experience, difficulty seeing stone/ureter
 - Series using only ultrasound with good outcome
 - 2 RCT combined ultrasound/fluoro v fluoro alone
 - Less FT in ultrasound group
 - Similar outcomes



Hosseini et al. J Endo 2009, Gamal J Endo 2011, Basiri et al J Endo 2008, Agarwal et al. BJUI 2011



Summary

- Diagnostic imaging and interventions can result in significant radiation exposure
- Cancer risk increases with increased radiation doses in a linear fashion
- Alternative imaging should be selected when possible and unnecessary testing avoided
- Methods to reduce exposure during imaging and interventions should be actively utilized

